A Relation Between the Eikonal Equation Associated to a Potential Energy Surface and a Hyperbolic Wave Equation.
نویسندگان
چکیده
The potential energy surface (PES) of a molecule can be decomposed into equipotential hypersurfaces. We show in this article that the hypersurfaces are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is connected with the gradient lines, or the steepest descent, or the steepest ascent lines of the PES. The energy seen as a reaction coordinate plays the central role in this treatment.
منابع مشابه
Optimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملAnalytical Analysis of The Dual-phase-lag Heat Transfer Equation in a Finite Slab with Periodic Surface Heat Flux (RESEARCH NOTE)
This work uses the dual-phase-lag (DPL) model of heat conduction to demonstrate the effect of temperature gradient relaxation time on the result of non-Fourier hyperbolic conduction in a finite slab subjected to a periodic thermal disturbance. DPL model combines the wave features of hyperbolic conduction with a diffusion-like feature of the evidence not captured by the hyperbolic case. For the ...
متن کاملRheological Response and Validity of Viscoelastic Model Through Propagation of Harmonic Wave in Non-Homogeneous Viscoelastic Rods
This study is concerned to check the validity and applicability of a five parameter viscoelastic model for harmonic wave propagating in the non-homogeneous viscoelastic rods of varying density. The constitutive relation for five parameter model is first developed and validity of these relations is checked. The non-homogeneous viscoelastic rods are assumed to be initially unstressed and at rest....
متن کاملMulti-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation
A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...
متن کاملCoulomb corrections in quasi-elastic scattering based on the eikonal expansion for electron wave functions
An eikonal expansion is developed in order to provide systematic corrections to the eikonal approximation through order 1/k, where k is the wave number. The expansion is applied to wave functions for the Klein-Gordon equation and for the Dirac equation with a Coulomb potential. Convergence is rapid at energies above about 250 MeV. Analytical results for the eikonal wave functions are obtained f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical theory and computation
دوره 8 12 شماره
صفحات -
تاریخ انتشار 2012